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ABSTRACT

In this paper, the authors considered the problem of estimation of
the frequencies and the number of signals under a signal processing model

with multiple sinusoids. The frequencies are estimated with eigenvariation

- linear prediction method. The number of signals is estimated with an in-

formation theoretic criterion. The strong consistency of the estimates of
the frequencies and the number of signals is also established. Also, a
modification of forward backward linear prediction method is suggested to

yield consistent estimators of the frequencies.
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1. INTRODUCTION
l‘
Consider the model A
to
y(n) = 7 a exp(iwn) +w(n), n=1,2,...,N (1.1)

where a, # 0 are unknown amplitudes, w, € (0,27), (k = 1,2, ..., to), are 3
unknown frequencies and i = /~1. Usually we assume that the noise w(n) has ,'
mean zero and finite variance 02. The above model is of interest in tne ?
area of signal processing. Under the above model, it is of interest to ;'
estimate the unknown parameters. Even when tO is known, it is difficult A
to find the least square estim~ies of ak's and wk'S since it would involve §
solving a system of nonlinear equations with exponential functions. To o
avoid this difficulty, various methods have been developed in the literature, *
such as linear prediction (LP) method, those based upon using principal ﬁ}
eigenvectors of estimated cross-spectral density matrices (Liggett (1973)) :
and the forward-backward linear prediction (FBLP) method (Nuttall (1976) ?
«

and Ulrych and Clayton (1976)).

In the LP procedure, we have still to solve a polynomial equation whose

.

degree would be rather high although we do not solve a system of exponential

equations. Also, it does not work well for the case of low signal-to-noise '
! ratio (SNR). Tufts and Kumaresan (1982) made modification to the original R
‘ FBLP method, and showed by simulation that the modified FBLP works 2
much better than the original FBLP when the SNR is relatively low. However, ;‘
it still involves solving a high degree polynomial equation. 4
| In the present paper, we investigate the estimation of both the ;f

number of signals and the amplitudes and frequencies of the signals, and

study a method which we refer to as equivariation linear prediction
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(EVLP). Using this approach, we can at the same time find the estimates of
number of signals and the freguencies and then using the usual least square
method to get the estimates of the amplitudes. In this method, we need only
to solve a polynomial equation with the lowest degree. In Section 2 we
shall state this method. In Section 3 we shall prove the strong consistency
of this procedure. In Section 4 we give the limiting distribution of vari-
ous estimates, given in previous sections. In Section 5 we give a further
discussion on the FBLP and the modified one. In this section we will show
the reason why (theoretically) the modified FBLP works better than the
original one when the SNR is relatively low and the sample size is small,
and show that these two methods will become equivalent when the sample size
goes to infinity. More importantly, we shall point out that both these two
methods do not provide consistant estimation of the frequencies, and we
shall pose a further modification on FBLP such that the procedure is con-

sistent.
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2. DETERMINATION OF THE NUMBER OF THE FREQUENCIES ;
AND ESTIMATION OF THE FREQUENCY PARAMETERS ,

Suppose that the data sequence y(n) is given by the formulas

tg
y(n) = ] a

.exp(iw:n) +win), n=1,2,...,N, (2.1)
3=1 !

J
where i = /-1, {aj} is a set of unknown complex amplitudes, {wj} is a set
of unknown angular frequencies, and {w(n)} is a sequence of i.i.d. complex

random noise variables such that

f 3y - Ay

(1) = 0, EW(DATTY = o2, Ew()]? <= (2.2) ;
with 0% unknown. We assume that wg # w13 # K, and wg e (0,20) for all j. -

In this paper, we are primarily interested in determining tO and esti-

mating the frequency parameters wj Once w.'s are accurately determined,

J
the aj's can be found by a Tinear least squares fit to the data. %
To determine to, the true number of different angular frequencies, it v
is prescribed a prior that t) < T < =. R
For any nonnegative integer t < T, write complex vector p(t) as ,;
[§,
p(t) - (bgt), ...,bﬁt))'. (2.3) ;
Put* )
-3
N t — p-
s, = minge 11 bl ETmon 2 ey, X
n=t+1 2=0 $
t=0,1,2,...,7T, (2.4) 3
t
Rao (1986) also remarked about finding St’ for given t, to estimate the n

frequencies. .




t
where Hb(t)ll = (] Ibgt)lz)l/z. Take Cy satisfying the following condi-

2=0
tions:
lim Cy = 0 and 'I1'm/ﬁCN/HOg]ogN =, (2.5)
Noeo Now
Then we can find a nonnegative integer EO = EN < T which minimize
Rt = St + tCN, t=20,1, s T (2.6)
and use f; as an estimate of t,.
Further, we can find a unit (504-1)x1 complex vector § = (Bo, . ’BE )!
0
;N Yo )
St =—=- 1! | Ibyln-1J]°. (2.7)
80 N-t, ot 41 270
0 N=t0+1 -
Let 6jexp(i&j), =1, ceus tgo be the t0 solu?ions of
N
B(z) ¢ T b.23 =0, (2.€)
j=0 4

~

where Bj >0, &j e [0,2n), j =1,....t5. Then we use Bj's as estimates of

w:'S.

J .
Note that if B(t) satisfies

N t
1 c(t)7——,2
St = Wt | 16, y(n-2)]%, t=0,1,...,T, (2.9)
to Nt ot a0 ®
then St is the smallest eigenvalue of the matrix
M- Gl im0, (2.10)

and §(t) is the corresponding unit eigenvector, where

----- LI
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Y_Qm -N-t Z .Y(n'l)y(n'm), 2,m=0,'|,...,t. (2‘]])
t

The above method combines the procedure of parameter estimation with

the detection procedure of the parameter number. As shown in Section 3,

(£0’ {Sj, j 5_{0}) is a strong consistent estimate of (t ,'{wj, Jst )
under the condition (2.2). Besides, as an estimate of ¢“, SE is also
0

strongly consistent. In Section 4, we obtain the limiting distributions
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3. STRONG CONSISTENCY OF THE DETECTION AND ESTIMATION PROCEDURES

In this section, we establish the following.

THEOREM 3.1. Suppose that {w(n)} is an i.i.d. sequence such that (2.2)
holds. Then with probability one for N large, the following results hold:

(i) ty = tge

(ii) there exist a unique (to-+1) x1 unit vector § (up to a complex
factor with modular one) which satisfies (2.7), and
(iii) for appropriate ordering,

~ . N 2 .
wj-*wj, J—],...stos Sto'*c, as N > o,
In other words, (fo, {&j, J j_fo}, SE ) is a strongly consistent estimate of
0
. 2
(t09 {U)J"Jito}go)-

To prove this theorem, we need the following lemma:

LEMMA 3.1 (Petrov). Let {Xn, n>1}bea sequence of 1ndependent real

random variables with zero means. Write sﬁ = E EX and S = _2 Xy IF
391

1im inf sﬁ/n >0

N>

and

2+8

TR SR

for some constants K and § > o, then

1im sup S /(252109( ))1/2 1, a.s.

N-»o0

For'a proof, the reader is referred to Petrov (1975) and Stout (1974, p.274).
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Proof of Theorem 3.1.

Under the model (2.1), we have

AR Y )
»Q,m N'tn=t+]
N Yo %
1
ol ) Z a. exp (n-2)w;) + w(n-2))( 7 a. exp -i(n-mw;) + w(n-m))
n=t+1 j=1 9 J j=1 R
tz°| (i (m-2)us) tzo I,
= a | exp(i(m-2 W + a exp(i(mw, 20 )+ 7 exp(in(uw.-w,)
J=1 3,k=T1,j#k 3% kTN by k
to ;N
+ Y a exp(1(m-Q)wJ)ﬁ:E Y exp(i(n-m)w.) w(n-m)
j=1 n=t+] I
S? : : N
+ a.exp(i(m-2)w;) - exp(-i/n-2)u.)w(n-1)
j=1 9 ) 'tn=%+1
1 N
! t T Y w(n-2)w(n-m)
n=t+1
=JdyHdo J3N *+ gy JSN (say) ty,m=0,1 (3.2)
FOY‘ wj f wk, J # ks
N exp(1(t+1) (u;-w, ) - exp(F(N+1) (w;-u )
le L explin(wg-w,)) = el e 0(%)’
n=t+1 (N-t)(1 - eXD(1(wj'wk)))
Jfk’ j’ k=]’ ’t0°
Thus
1
| oy = O(ﬁ) (3.3)
! . By condition (2.2) and Lemma 3.1,
_ log Tog N /
Iy = 0(/108doaly g o Jgy = 0( /logloaly -y o (3.4)

‘ as N = o,




L n e o g

By the Taw of the iterated logarithm of M-dependence sequence,

0( ]jEnggji)’ for ¢ # m,

- N
J5N a.s
02 + 0( —5¥%T99J1), for 2 = m,
Let
(t) _ ((t) (t) 0
t) _ t t) _ 2 2 .
r = (Ylm‘)’ Ylm =0 62“1 + JZ]lajI exp(1(m-2)wj),

Lym=0,1,...,1,
where sz is the Kronecker sign.

Using (3.2)-(3.6),

;([\‘t']) - Y(:]) + 0( /lO”N]Og N), a.s., 2”m=0, ], o, t.

+(t)
Let A] £4+1

the eigenvalues of r(t). Then
A(t)x(t) > trr(t)r(t).
o

(see von Neumann (1937)). Hence,

t+1
~(t) _,(t)y2 _ ~(t) _ (t)y2
jZ](Aj 2 )T < tr(r e,
Put
[ 1 1 |
0 - exp(-iw;) ... exp(-iwto) . A= diaglay,ay, .era, J.
(t+1)x ty 0
exp(-Ttu) ... exp(-itwto)‘

- -

A L e L L AR RRIITIC TN, g S 0 J S E NERY N AL LR 2L R CL I %
PR N e P A I R A N B S e B Rt A £ ST G A A 0 o 8 o N i ik

> oo 3 () be the eigenvalues of (%), and A%t) > ... 3_x£f% be

PP ¥ A Dy
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| Since aj F0,i=1, ..., tO’ and w3 # Wy if j # ky, it is easily seen that
rank(QA) = min(t+1, to), (3.10)

t) . 2

r{ I, + QAA*Q*, (3.11)

t+l

and Q* denotes the transpose of the complex conjugate of Q. Thus

2
A(t) >3 for t <t

t+] 0’
Aii{ =o? for t >ty (3.12)

Hence, by (3.7) and (3.8), noticing that St = i(t) we have

t+1°
; -, (t) 2
;12 St = Ag4] > 0, a.s. for t < ty (3.13)
and
s, - o%| = 0 /lQﬂﬁﬂﬂlﬂ), as.  for to>to. (3.14)

Assume that t < tO' Then by (3.13), (3.14), (2.6) and (2.5),

2 (t)

= At"'] < 0, a.s. (3.]5)

1im(R, -R,.) =0
N> t0 t

Hence, with probability one for N large

tO £ for t < ty- (3.16)

Now we assume that t » ty- Then by (3.14), (2.6) and (2.5), with

probability one for N large,




1 1

K Rtg " Rt T 3, "3t (t-tylCy
Y
"y
y = o( /10503y _ (-t e, < 0. (3.17)
‘0
oy Hence, with probability one for N large,
:. tN = to, (3-]8)
N which establishes (i).
-z To prove (ii) and (iii), without loss of generality, we can assume
Y - .
t0= tg- By (3.10) and (3.11) with t = ty>
- (t))  (t,) (t,)
; Fea en Ve O (3.19)
i 0 0
Thus, the equation
¥ (t,)
t
4 0 2
y (r -0 Itoﬂ)lg =0, |b]] =1 (3.20)
) has a unique root b = (bo,b], ...,bt )' (up to a complex factor with modular
. N 0
or(1e)5 By §2.;), b is a unit eigenvector corresponding to the smallest eigen-
. (t At -
: A 21 of ¢ 0 . By (3.7), (3.8) and (3.19), with probability one for N large,
0
: (ty) .(tg) (ty)
270 2470 20
) < A < ... <A , (3.21)
'S which implies that the equation
i "(tO) "(to) " o
. (r - Ato”lto”)@ =0, |bjl="1 (3.22)
L]
\,
a ~ ~ ~ ~
N has a unique root b = (bo, bys .o by )' (up to a complex factor with modular
\ 0
l'
[
W
.
k)
DAL 0 O 0 T o N 8 T A AT A 0 AN O N N G A P N G R N




12

one), and, with appropriate choice of this factor, we have

T 1lim b b, a.s. (3.23)

Nooo & 7

Now, choose b = (bo, byseeesby )'such that |[b]j = 1 and

to
z) = Z b z =0 (3.24)

has t; roots exp(im]),exp(iwz),..., exp(iw, ). Then b is the unique root

tg

of equation (3.20) (up to a complex factor with modular one) and vice-versa.

Using (3.23),

lim B(2) = B(2), a.s. (3.25)
Noreo

Now, use the definition of Sjexp(i&j), i =1,....ty, for appropriate

ordering,
lim o, exp(1w ) = exp(iw;), a.s., for j =1, ty>
Now 3 J
which implies
1im (.UJ- = (.\)j, a.S., fOY‘ :j = 1, o.-,to. (3.26)

N-+o
Using (3.14), we establish parts (ii) and (iii) of the theorem.

Remark. The EVLP method can be easily generalized to EVFBLP along a
similar line. The anoloques of the results given in this section and the
next section can be proved step by step as the proof given in these two
sections. Also, we can expect EVFBLP to give more accuracy when SNR is

high and the sample size is small.

N Jon 5.
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4. LIMITING DISTRIBUTION OF Sz AND (d;, § < o)

%o
Since EO > tO’ a.s., as N » =, we can use tO instead of EO when we
consider the limiting properties of various estimates involving t . For

0
further simplicity of notation, we will omit the subscript 0 of ty and sim-

ply use t for to. Also, we will keep all other notation defined in pre-
vious sections. In particular, the matrix @ in (3.9) is a (t+1) xt matrix.
Throughout this section, we assume that {w(n)} is a sequence of i.i.d.

complex random variables such that

2

Ew(1) = 0, E(rw(1))% = E(Iw(1))? = 142,

| —

E(Re(1)Iw(1)) = 0, and Var([w(1)]2) = ac® with o > 0. (4.1)

Here, Rw(1) and Iw(1) denote the real and imaginary parts of w(1) respec-

tively.

LEMMA 4.1. Suppose that condition (4.1) is satisfied. Then

N
1 y . D . _
— ) exp(-i(n-QuIwln-2) — v,, Jj=1,2,...,t, 2=0,1,...,t
/N-t n=t+1 J J 3
1N 2 2,0
z (lW(n-R)l '0)—’—".]0, Q=0,1,...,t,
vYN-t n=t+]
1 g w(n -9)GRTT:7H)-JZ+ u if 0<m<g<t
/N-t n=t+] f-m - =

Here vj's and uj's are independent of each other and

. 2 ,
(1) Vj Nc(oao )a J
(ii) Ug ~ Nr(O,ao

(111)  us = N(0,5%),  j=1,...,t. (4.2)

[}

—
3

.

.

-
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Also, NC and Nr denote complex and real normal distribution respectively.

Proof. The normality of Vj’ Ug and uj follows directly from the cen-

tral limit theorem by computing the covariance matrix and the fact that

N
% 7 exp(inw) » 0 for any w # O.

n=1
Put
A = diag[a], cees at],
1 - 1
o - exp(-iw]) ces exp(-imt)
(t+1)xt
exp(-itw]) - exp(-itwt) R
Ug Uy .. Uy
Uy ug '.. .
U = S N (4.3)
(t+1)x(t+1) Uy
ut e | u] * u0 ,
- _2 - NFlo . - TS -
oy /N-t(st o), TNJ. /N t(pj 1), ANJ. = /N t(dj J.),
T, = (TN1’ ...,TNt)' and 4y = (AN], ...,ANt)'.

t
Define B(z) = bt i

. i=1
lpil =1 for b = (b,

t
(z-exp(iw,))= ] b 2% where b, is chosen such that
J 420 ) t

b], cees bt) . Write

D(exp(iuw)) -1'3%8(exp(iw)), and

[p]
"

diag[D(exp(iw])), ...,D(exp(imt))]. (4.4)
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We have the following result:

THEOREM 4.1. Suppose that {w(n)} is a i.i.d. sequence of complex

random variables such that (4.1) holds. Then we have

oN L ;- b*Ub, (4.5)

and

Ty + iay =2 671 (A) ! (axe) Tarub. (4.6)

N

Proof. Put V = diag[v], ...,vt] and

=L N (N (4.7)
By (3.2), (3.3) and Lemma 4.1, we have
H2H = (hzm) = Q(AV+AV)o* + U, (4.8)
Since St is the smallest eigenvalue of f(t), we have
- (t) _
- (t) 2 | 2
= det[r -0 It+1 + ,/NT—H (St g )Itﬂ]
1 ; 2
= det[QAA*Q* + H-(S,-07)1,,.]. (4.9)
NT t t+]

Let Q be a unitary matrix such that
Q*QAA*Q*Q = diag[g],..., gt,O], E1 2 -0 28> 0.
(t)

Note that the last column of Q is the eigenvector of T corresponding to

(t)

the eigenvalue 02 of I We can choose this column as b. Now we have

e N AT AN ~ '-\‘\‘\‘\.‘\’-.\ ---------- .
ﬂ\&; \'t\"\f_&M .\'l ‘.\‘ ‘:H-{.\ "h".\.th. w* :A.'Ls DS :A.*%‘.L' a2y :' :'_!':‘ ) .\‘ PO
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2
51-(st-0 )

2
0 = det £4-(S¢-0") 1

. (4.10)
MN-t

Q*HQ

—(St-oz)l

Since H —2» H, by Skorohod's representation theorem (see [7]),

1/4

we can assume H —2 H, a.s. as N » =, Multiply by (N-1t) the last

row and the last column of the matrix in { } of (4.10) respectively. By

(4.10), St > oz, a.s. and noting that o*b = 0, we have

Iy o T b*Hb = b*Ub, a.s. (4.11)

Note that (4.11) reveals only that there exist some versions of ZNs ©o
H and U which have the same distributions as Ty © H and U respectively
such that (4.11) holds. From this we only get (4.5). The principle of

this statement also applies to the following proof of (4.6) and so on.

(t) 2

Since (f 'Stlt+1)§ = 0 and (F(t) -¢°I,,,)b = 0 with the choice of

t+1
b such that b - b, a.s., we have

. ~(t) b
0= N-t(r S¢lessb
- t) 2 1 & 1 1
—/N-t(r( - 0°] + He —zg I, .,)(b+ n,)
t R AT VU e
= (plt)_ 2 ” .
(I‘ a It+])nN (H CNIt+])p + (H CNIt‘H)(Q-p)’
h = /N=t(b-b) &
where N t(? 9) (Y'lNos ""”Nt)" (4.]2)

Write n) = Qﬁl) + QﬁZ) such that le) e u(a) and Q(Z)_L u(@), where

N

TR LERA,

AR

Yo

»

AT

" A
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u(Q) denote the space spanned by all column vectors of 2. Then g§1) = QB
for some t x1 complex vector QN’ Since H > H, a.s., iy e b*Ub, a.s.

and E + b, a.s., we have
(H-gy i) (B-b) > 0, as. asNoao, (4.13)

Note that

(I‘(t) '021t+])?N = QAA*Q*DN = QAA*Q*IJ&]) = QAA*Q*QﬁN (4.18)

and

(H-zpli )b > (H-cI ;)b = Ub - (b*Ub)b

-~

(I 4y -bb*)Ub, a.s. (4.15)

By (4.12)-(4.15), and I, - bb* = a(a*2) 'a*, we get

t+l
-1 -1 -1
iy -(a*) "(AA*)"'(a*2) ‘a*Ub, a.s.

which implies that

nl{l]) . -Q(Q*Q)-](AA*)-](Q*Q)-]Q*Ut_}, a.s. (4.16)

Hence

R¥ny = Q*Qﬁ]) > -(AA*)-](Q*Q)-]Q*UQ, a.s. (4.17)

Finally, let us consider the limiting distribution of A,. Since

é(sjexp(i&.)) =‘B(exp(iwj)) = 0, we have for j =1, ..., t,
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t . -
0 = ﬂqlzobz_jexp(1£wj)
5 N £ " N - “
= b _+b_ -b i2w,) + .- i2w.) + 2w, )~ i 2w,
E RZO( Jtb, 2){exp(MwJ) (PJ 1)exp(1sz) (exp(12wJ) exp(11wJ))}
t . t. 2-1 . .
= 2ZonNgexp(me.) +lzobl{zpj* TNjexp(1%wj) + 1£ANjeXp(1le*)},
h . 1,0, iy . yl0s 0 sws ]
where o, € E °J] or [pJ 1] and wix € [wJ wJ] or [wJ wJ] We have
proved that b - g, a.S., 5j -1, a.s. and Gj > Wy a.s. for appropriate
1]
b

ordering and for j = 1, ..., t, so that, with probability one, we have
a*ny + 6(Ty+iay) + ollITyll+ Iayll) = 0 (4.18)

for large N. Since exp(iwj) is a simple root of the multinomial B(z), we
have D(exp(imj)) #0for j=1,2,...,t, and G is nonsingular. From this,

and (4.17)-(4.18), it follows that

Ty + oy > 67 () (ex) Tartb,  aus. (4.12)

As mentioned above, this only gives the corresponding weak convergence

described in (4.6). This completes the proof of Theorem 4.1.
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P
o 5. FURTHER DISCUSSION ON MODIFIED FBLP METHOD
()
3; Consider the model (2.1) and suppose that (4.1) holds. In this section
0 . .
i we discuss the problem of estimating the frequencies when t0 is known, It
- is emphasized that some of the notations of this section may be different
.
N from those of the previous sections.
i Nutall (1976) and Ulrych and Clayton (1976) developed the method of
forward-backward linear prediction (FBLP), which works well when the signal-
¢§ to-noise ratio (SNR) is sufficiently high. However, it becomes false in
)
f: the case of low SNR. Tufts and Kumaresan (1982) proposed a modified FBLP
“a
(MFBLP) method. They showed by simulation, that the estimation of the
sﬁ frequencies has been greatly improved by MFBLP when the SNR is relatively
>
5 low. In this section we shall give a theoretical analysis to show why the
LAT MFBLP improves when SNR is low and the sample size is large. Also, we
,P shall suggest a further modification to this method.
¥
t: First, let us describe the FBLP procedure. The reader should note
;4( that it is assumed that the true number of signals is known in this procecure.
w The linear prediction coefficient vector B(t)(tg_to) is defined as the
’ p
. one which minimizes
o
1 N t A(t) 2 N‘t t A(t) 2
Lo ly(n) + T b " yln=2) [+ ] Jy*(n) + ] b, ~y*x(n+a)]%,  (5.1)
X n=t+] 2=1 n=1 2=1
e
o ~ ~
where bgt), £=1,2,...,t, are the components of g(t).
In case the solution is not unique, we select the one which also mini-
1; mizes
t .
. ) lbiﬂlz- (5.2)
» 2=1
.’i
s In light of this, we call the solution ?(t) least normed prediction (LNP)
454
L)
L)
o
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coefficient vector.

We can construct the transfer function of the prediction error filter

~ t ~
B (z) =1+ 3 bgt)z'z. (5.3)
2=1
Let o(t)exp( (t)) (t) &ét) e [0,27), 2. =1,2,..., t, be the first
to roots of B(t)(z) which are closest to the unit circle in the complex
plane among the t roots, and take &ét), 2 =1,2,..4 to as the estimates of
wl'S.

To introduce the MFCLP method, write

y(t), y(t-1), s y(1)

y(t+1), y(t), vees y(2)
Pol oy, yedh e vt
y*(2), y*(3), cees  Y*(tH1) {
\ y*(3), y*(4), cees  y*(t2) |

sy PO ) N ) cs vy
ey es ey K] ey

vy K] s ey R

y*(N-t+1),  y*{(N-t+2), ..., y*(N)

~(t)
b
é(t) .
o(t)
and

ho= (y(t41), y(62), ooy Y(N), y*(1) ey y*(N-E))".

&, Ot - TN R R R L O S LA RN .
WMI\?‘ ;&MMJM.&L! :!:(:f;!;l’._fu._q-"‘_n-(.(‘('JJ-;_,(--‘L e -';’Jll‘L* L-’:‘_\ e
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It is well-known that the LNP is

plE) o (V) Fyh (5.4)

PPN

where (9*9)+ denotes the Moore-Penrose inverse of (Y*Y).

Now, let (2N-2t)']9*9 have the following spectral decomposition

1A~ t ...
(2N-2¢)"¥*¥ = ¥ 3.0.0%. (5.5)

As shown in the sequel, with probability one for large N, the above matrix

is positive definite. Hence, the FBLP gives the LNP as follows:

~ t A -~ -~ ~
() = ¥ 2 (aha,, (5.6)
- §=1 J "~J<"-)
where
v = -(2N-2¢) 71V +h. (5.7)
1f we use
) ?pA_] .
b, = X, (u* . 5.8
SRR (a%7)d; (5.8)

instead of ﬁ(t) in the above FBLP procedure, we get the MFBLP method.

In this section, we propose to use

LIRS .

. x . > s 5.9
NS ) (Ulydus, >ty (5.9)
instead of é* in the MFBLP procedure. We will establish the strong consis-
tency of the estimates of the frequencies for this method under the condi-
tion (4.1).

Now, we consider the case without noise. To distinguish this case from

My 9. P % RN ) N % '-"-"-"\'.‘-"-"-"."-\‘\."\-‘-‘\"\"‘ AT '-N\_‘,\",."-\v NN VA TS T . ‘1
M I A N M I ST N T A A NS RS T T s AN T T AT A AT L TN TR AT o
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the case with noise, we drop out the superscript "." in all notations.

Write
a]exp(itw]), a, exp(itwt )

0 0
a1exp(i(t+1)m]), atoexp(i(t+1)wt0)
aiexp(i(N-1)w]), atoexp(i(N-l)wtO)

Q= a,exp{-2iw,), a, exp(-2iw, )
| 1 i tO t0
a]exp(-3iw]), a, exp(-31'wt )

0 0
a]exp(-i(N-t+1)w]), cees atoexp(-i(N-t+1)mt0)

and
1 exp(-iw]) v exp(-i(t-])w])
] exp(-iwz) .es exp(-i(t-])wz)
q = e e
\\ 1 exp(-iw, ) exp(-i(t-1w, ) /
to t /
/
Then
Y = Qn (5.10)
and
h = Qg (5.11)
where 2 = (exp(im]), cees exp(iwt .

0
Substituting (5.10), (5.11) into (5.4), we get

b{t) = -(a%q+qn) “a*arag,. (5.12)
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Note that Q and £ have rank to. By simple computation we find

E(t) = _Q*(QQ*)-]QO. (5.]3)

Let B(t)(z) be the function constructed according (5.3) with the vector p(t).
It is easy to verify that B(t)(exp(iwz)) =0, 2=1,25 c00) tg- It is
interesting that the LNP, in the noiseless case, is independent of the
amplitudes.

Next, we shall consider the case when the noise arises. Let

T w(t), w(t-1), s W]
w(t+1), w(t), vees  W(2)
W= w(N-1), w(N-2), vees  W(N-t)
w*(2), w*(3), cees  wWX(t+1)
w*(3), w*(4), vees  WX(t+2)
wr(N-t+1), w*(N-t+2), ..., w*(N)

and
Wy = [w(t+1), w(t+2), ..., w(N), w*(1), w*(2), ..., w*(N-t)]'.

Then we have

Y=Qqq+W (5.14)
and
h = Qg + Wy (5.15)

-------------
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By (5.14) we have

VY = g*Q*QQ + WAQR + Q*QW + W*W.

Under the conditions of Theorem 4.1, we can similarly prove that

(2N - 2t) " (wQa + a*Q*H} =
and
(2N - 2t) T - o1, =
Hence
(2N - 2t) 7 1¥#¥ = (2N - 2t)']Q*Q*QQ +gq

Similarly we can prove

0(/’%—109 logN), a.s.

0(/:‘—109 logN), a.s.

2 /

(2N - 26) 7194 = (2N - 20) Tararagy + 0( /T10g 109 M), s,

Put

A = diag[|a1|2, ...,lat ]2].
0

t is easily seen that

(aN-2t)7'g+q = A + 0(}),

and
(2N - 2t) " a*q*Qa
(2N - 2t) ™ a%Q*ag,
Therefore,
(2N - 26) 1Y+ = a*Aa + o°1,
and

Q*AQ + 0(-:‘-) .

+o(dy.

Q*AQ N

0

0( /NI log logN), a.s.

It + 0(/ —N-loglog N), a.s.

(5.

(5.

(5.

.16)

17)

18)

19)

.20)

.21)

.22)

.23)
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(N - 2t)"'¥*h = o*agy + 0( /X Tog TogN), a.s. (5.24)

Note that g(t) is independent of N in view of (5.13). Hence, by (5.12) and
(5.22) we get

Q(t) - '(Q*AQ)+Q*A90
= (a*he)’s. (5.25)
Here we have
é = -Q*AQO' (5.26)

Note that the rank of the txt matrix Q*AqQ is to. So the matrix Q*AQ has
the following spectral decomposition

to

Q*AQ = (5.27)

2 MRNASEN *s

where G128y 2 ... 2z, are the non-zero eigenvalues of q*Aq, and yj's are
0
the corresponding eigenvectors.

Applying Lemma 2.1 1in Bai-Krishnaiah-Zhao (1985), by (5.23), we obtain

2 Cj + 02 + 0( N]og]og N)s a.s., forj = tO’

. oZ + 0f /ﬁ' log Tog N) , a.s., ford=tgH, ...t (5.28)

By (5.5), (5.23), (5.27) and (5.28), we get

>
]

t
t . 0
) (xj -oz)gjgg = chng + 0( 199—%¥lﬂ), a.s.
§=1 je19°
to :
y ;jajﬁg = 2 cJ"ng + 0 —°1—°9-—), a.s. (5.29)
j=173%9"
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26 .

and
AUU* + g u.u* = g.+o ). v¥
g j=1 9~ ~ J=t0+]~J~J 351 J ~j~
3
‘ 2 ¢ 0g Tog N
+o 1 vvE + 0 ——5LTT9—- ), a.s. (5.30)
J-t0+1~J~J

Take Vs J = ty*l, ..., t as the rest unit eigenvectors of @*Aq such that

viv. =0 for j# 2, j,2=1,...,t. Put

~J"2
Uy = (uys ...,gto), U, = (gt0+1, ceea ),
txt, tx(t-to)
V-' = (!], ...,y'to), v2 = (Yto_'_'l,---Q!t)’ '
txt, tx(t-to) :
and
r Yo = Gt Voo Gy '
tx(t-to) txt, tx(t—to) ?
where G

1y and G,y are t0>((t-t0) and (t-to) x(t-to) matrices respectively.
' By (5.29),

t
0
o A " 1o Tog N
* = -
jﬁ]ci!j(!j!k) 0( -Jl$r5L—), a.s. for k t0+1,..., t.

Thus

G?VZ = 0 /jiEL%QSJ!), a.s. (5.31)

+ 0( l-CELng—l\i), a.s. (5.32)

Thus

PO OE I 2 e g1y
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GoGr = I, . + 0f lQﬂfkﬁLﬂ), a.s.

N (5.33)
- log Tog N
G5NCoy It-to + 0 N ), a.s.
Similar to (5.31), we have |
vl, = o( /1o toaly g 5. (5.34) |

which implies that

6y = O /—lJ—W), a.s. (5.35)

From the above argument, it follows that

t t
S e 2 O l% = og logN ‘
I 0% = 0,0 = vpvg + o floajeahy

j=t0+1 J
J=t0+1 3=
t o t e
Y c-zg.g* = 0-2 Y V. V3 + 0(o” ]SEL%QSJ!), a.s. (5.37)
j=ty*l 3=J =ty J-
and
\
s t |
AN =0Tt T vy 0 flogloghy = (5.38)
jata1 9 NEN jetgH *3%3
)

Here we write the factor 0'2 in the remainder in order to compare the above

methods in the sequel. Using similar argument, we can prove that

t . %o
—l“ - 2,-1 og log N
Z YRTH J_Z](cjw )" ysuy + 0 /—9—9—'N‘), a.s. (5.39)
and
0 . - tg
.Z (x -i ]u u* = Z]c ]vij + 0( _Qﬂ;ﬂﬁiﬂ), a.s. (5.40)
j=

----;----"-a...vnyvnh‘-p L P e g™ Y e -.1,‘__‘_-\7-_'-\.*-'\‘\_‘-\\’\\.‘-
G R Rty P4 e e e LR e R s A LR N
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By (5.7), (5.24) and (5.26),
i =8+ 0f JSEL%Qﬂli), a.s. (5.41)

Note that by (5.25) and (5.27), we see that

t
0 .
_Z]cgl(ygg)yj = (a*A2)’s = g(t). (5.42)
J:
By (5.27), we have
V§Q*AQ =0, and VEQ*A = 0. (5.43)

From this and g = -Q*AQO, it follows that
t
L (v*g)v: = 0. (5.44)

Thus, by (5.6), (5.8), (5.9), (5.38)-(5.42) and (5.44), we have

t
~ 0
SR (cj-+oz)'](!§§)!j EALyACER C LIPS (5.45)
j=1
to
be = ) (a.-+02)'1(v*8)v. + 0 /199f¥¥Lﬂ), a.s. (5.46)
a0 -3="%3
and
b= b(t) 4 o Mogloaky ;¢ (5.47)
- - - - t. - .
Put b = (b], ’bt) , B(z) =1+ 2Z]bzz and let ojexp(1wj),

i=1,2,...,t, be the roots of B(z), where 5] 3_52 2.0 200> 00 As

pointed out earlier, Wi j=1, ...,to, are the roots of B(t)(z). Kumaresan

(1982) has shown that the particular choice of p(t) places the t - tO extraneous

i A A T e o e Y o S N P e DAL S O N O, T T T T I T AL N TR TR LA P PO PR LR T R PR T R AN
R T A L T AT DT, i W M B A6 G o R RN G 21 AN SRR G, B SORCA SR
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zeros of the prediction-error filter transfer function B(t)(z) inside

of the unit circle. Thus, by (5.47) we obtain that for appropriate order-

ing of éi”"’ Gto,

J,J. =i+ 0(/}4—9_” Tog M) a5, for j=1, cees tgs (5.48)

which implies the strong consistency of the third method by us.
By (5.45) and (5.46), we see that the FBLP procedure and the MFBLP
procedure have the same asymptotic behavior.

Denote by é(z) the transfer function constructed according to (5.3)
t
() 0 2,-1
with b replaced by } (;j-fc ) (vgs)vj. In the same way, we can con-
J=1 T
struct é*(z) using E* instead of ﬁ(t) in (5.3). By (5.46) we know that

B (exp(in;)) = Blexp(in,)) + (J@ECRCL Tog Ny 5 5. (5.49)
for j=1, oo by In general, é(exp(iwj)) # B(t)(exp(iwj)) = 0 for

j=1, ...,to in view of (5.42), so that MFBLP method is not consistent.

2

But we know that é(z) reduces to B(t)(z) when ¢© = 0. Thus when 02 is small

enough (with respect to xj, j=1, ...,to), B(exp(iwj)) = 0 and é*(exp(iwj))

=0 for j=1,2,..., to.

In the same-way,

5(8) :

eXp(iwj)) = B(exp(imj)) + o(o'z/CBEL%OQN),

a.s. (5.50)
for j=1, ...,to. When 02 is small, the main term of the above expression
é(exp(iuj)) =0 for j < ty This means that when 02 is small and fixed,
the FBLP procedure can estimate the true frequencies well in the large

sample case. However, when N is not large, the remainder in (5.50) would
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bring much random effect on the zeros of the prediction-error filter

transfer function é(t)(z). As shown by the simulation results given in
Fig. 4 and Fig. 5 in Tufts and Kumaresan's paper (1982), the main random
effect is imposed on the t - t, extraneous zeros of ﬁ(t)(z). If we drop
j_1§44i3](93£)§j when we construct the transfer function, as done by Tufts
0

and Kumaresan, the estimates of the true frequencies certainly can be im-
proved. This is why the MFSLP procedure is better than the FBLP procedure,
as shown by the above simulation results.

Thus, we establish the following.

THEOREM 5.1. Suppose that (4.1) holds in the model (2.1). For the
third procedure proposed by us in this section, and for appropriate order-

ing of &],... » we have

s W
to

. Ao oo
g = gt 0(/1—°9%9—N), a.s.

mrj=1,”.,%.
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